
UV-CDAT Spatio-Temporal Parallel Processing 
Tools 

 
Intended Audience and Purpose 
The UV-CDAT Spatio-Temporal Parallel Processing Tools are designed to dramatically reduce 
the running time of parallel data analysis jobs under certain conditions. These conditions 
include: 
 

1 The data is composed of a large number of time steps. 
2 For temporal parallelism: 

a The data analysis operations are to be applied to each time step, and time 
steps are independent of each other (no data exchange between time steps are 
required). Examples include generating an image of each time step and 
creating a contour of each time step. 

        OR 
b The data analysis operations require a reduction operation to be applied over a 

certain time period. An example would be generating monthly temperature 
values from daily temperature output. 

3 Optionally, for spatial parallelism the data for a single time step does not fit in a 
single core’s available memory while utilizing all cores on the processor or node. 

 
Introduction and problem definition 
In the age of “big data”, dealing with the massive amount of data can be a enormous 
challenge. For our definition of big data with respect to scientific computing, we are going by 
the working definition of data that requires an inordinate amount of time to analyze to obtain 
salient information from an appropriate computing hardware. Often when the analysis is 
separate from the computation (i.e. the simulation code producing the data), disk IO can be a 
significant factor. According to the DOE Exascale Initialize Roadmap, Architecture and 
Technology Workshop in San Diego in December 2009, there is expected to be a 500 fold 
increase in the FLOP/s between 2010 and 2018 but only a 100 fold increase in the IO 
bandwidth in that same time. Because of this we need to concentrate on ways to efficiently 
post-process simulation data generated on these leading edge supercomputers.  
 
Approach and solutions 
To this end we have approached this problem by reducing the amount of global operations 
that need to be done to process the data. We begin with the assumption that the simulation 
is time dependent and will be outputting data for multiple time steps. When processing this 
data, similar operations will need to be done for each time step but we look to group the 
amount of processes that work on a time step together to a reasonable size instead of using 
all of the processes available. We call the set of processes working together on a time step as 
the time compartment. By having multiple time compartments we can ensure that there is an 



appropriate amount of work being done by each process. Additionally, the communication 
between processes is generally done within the time compartment and not over the entire 
global set of processes. In fact, for certain situations such as creating an image for each time 
step there will be no global inter-process communication. An example of this is shown in the 
figure below for 3 time steps and 3 time compartments of size 4. Note that for more time 
steps each time compartment would process multiple time steps for this example. 
 

 
Note that the main advantage of this approach is that it escapes the typical limits of strong 
scaling for large amounts of processes where the computation per process gets overwhelmed 
by the communication per process. Similar results are obtained for weak scaling when the 
number of time steps analyzed is increased with process count while maintaining the same 
amount of work per time step. This is shown in the table below for results from the Parallel 
Ocean Program code (POP). Note that 1.4 GB of data is read in per time step. 

 
This was done on the Mustang supercomputer at LANL, using 8 cores per node. This is a 
reasonable time compartment size for this machine as long as the data fits on a single node. 
The reason for this is that it limits the inter-process communication to intra-node 



communication. While many analyses will be time step independent (i.e. time step A and 
time step B don’t need to share any information), we will also have cases where there is a 
global reduction operation. Computing temporal statistics (e.g. average temperature over all 
time steps) is an example of this. In this case each time compartment can compute a local set 
of statistics for all of its input time steps and then a global reduction operation is performed 
to get the statistics over the entire set of time steps. This is shown in the figure below. 

 
 

Accessing UV-CDAT spatio temporal pipeline 
1 One can access the UV-CDAT spatio-temporal pipeline by either downloading the UV-

CDAT binary from http://sourceforge.net/projects/cdat/files/Releases/UV-CDAT/ or 
building UV-CDAT by following instructions posted at https://github.com/UV-
CDAT/uvcdat/wiki/Development 

2 Launch ParaView from the UV-CDAT install directory. The instructions to create and 
run spatio-temporal scripts using ParaView are described in the next section. 

 
Also, we have been working towards extending uvcdat spatio-temporal environment to 
support ingestion of custom / CDAT  ParaView workflow scripts. The central idea is to  
provide an environment when a user provides a serial script and some parameters as inputs to 
the spatio-temporal environment which then will run the script in parallel and produce the 
desired result. 

Create Spatio-Temporal Pipeline Scripts in the ParaView GUI 
The goal of using spatio-temporal parallelism is to reduce the time for analyzing the 
simulation results. Thus, a key component in the workflow is being able to create and run the 
scripts quickly and easily. In order to do this, we’ve developed a ParaView plugin that can 
generate these spatio-temporal pipeline scripts. In this section we’ll walk through the steps 
to create a script and then finally run it. 



 
The easiest way to create a new spatio-temporal pipeline script is to use ParaView’s GUI 
plugin. The directions are as follows: 

1 From the UV-CDAT install directory, run ParaView with the Externals/bin/paraview 
command. 

2 In the GUI, go to the Tools menu and select Manage Plugins. In the pop-up dialogue 
window, select TemporalParallelismPlugin and click on Load Selected. At this point it 
should list the plugin as loaded. To exit this dialog, click on Close. 

3 Now, go through and create a pipeline to process the data as desired. The key point 
here is that any data files or images that we want to have output from our script 
needs to be included. For data files we don’t need to store a local version, we just 
need to specify how to save the data when we run the script on the desired machine 
with the desired input files. We do this by creating a proxy to the writer that we want 
to use and specifying a file name to write to. Note that as we expect to write one file 
per time step we add in a wildcard “%t” which gets replaced with the time step index 
when creating the file. The steps to do this in the GUI are: 

a Go to the Writers menu and select an appropriate writer. Writers that cannot 
be used with the data set will be grayed out and not accessible. 

b Make sure that the writer proxy is highlighted. This is shown in the figure below 
where ParallelUnstructuredGridWriter is selected in the Pipeline Browser. 

c In the Object Inspector, enter the name of the file. Note that %t will be 
replaced by the corresponding time step for each output file. In the figure 
below the output file name is popoutput_%t.pvtu. Note that the transform 
filter is used to obtain a better visual representation of the data but we would 
prefer to save the data in its original unscaled form. 

4 At this point our script will read in a set of files, threshold out bad values (i.e. POP 
values that are set indicating that there is land) and write a file that contains that 
information. We may also want to output images based on our available view windows. 
This is set when we output the script. The steps to generate the script are: 

a Click on the TemporalParallelism menu item and select Export State. 
b This pops up a wizard to guide the user through exporting the spatio-temporal 

script. For the first window, click Next. 
c At this point the window will look like the Figure below. It’s possible that the 

user could have read in multiple files and this menu gives them the option of 
selecting which files they want to process in their spatio-temporal pipeline. 
Typically this will be a single input (in_msf.moc in this example) and the user 
can either double click on it or select it and click on the Add button. After this 
is done, click on the Next button. 



 
d At this point, we need to specify where the input is coming from on the 

machine we’ll be running the script on and what that input corresponds to with 
our local pipeline. For our example, we want the in_msf.moc source in our 
pipeline to read in files located at 
“/home/acbauer/DATA/POPData/in_msf*.moc”. The wildcard is included as we 
have multiple files to be read (e.g. in_msf0.moc, in_msf1.moc,...) for the 
machine we’ll be running on. After this is done, click on the Next button. 

 
e At the next window, we specify the time compartment size to be used in our 

run. Setting a time compartment size of 1 results in each process working 
independently on separate time steps. A time compartment size of 1 will work 
well when the amount of data per time step is small. For typical 
supercomputers though, the amount of memory per core is relatively small 
such that we will also need to spatially decompose the data in order to 
efficiently use each core while also not running out of memory on the node. In 
this case the time compartment size should be the number of cores on a node 



or some multiple of that value as the data size per time step increases. This is 
shown in the figure below 

 
 

f If an image is desired for the output, this is also where that needs to be 
specified. By enabling the “Output rendering components i.e. views” option, it 
will allow the user to set parameters for output each view in the script. The 
parameters are image type, the name of the file where again %t will be 
replaced with the corresponding time step and a magnification factor. In our 
example we only have a single view but if there were more the user could 



toggle through the views by clicking on the Previous View and Next View 

buttons.  
g After this has been done, click on the Finish button which will open a dialogue 

to specify the name and location to save the spatio-temoral pipeline script. 
 

Run the Spatio-Temporal pipeline script 
Now that the script has been created, the user will need to transfer the script to the machine 
it is intended to be run on. If the path to the input and output files aren’t known a priori and 
set in step 4d above, they may need to be changed to match where it is found on the 
supercomputer. As there are many different ways to run a program built with MPI (e.g. 
mpirun, mpiexec, aprun, etc.), the user will have to look at the machine documentation to 
figure that out. We assume here that mpirun is being used in which case “mpirun -np 32 
<install path>/Externals/bin/pvbatch --symmetric <name and location of script>” is used to 
run the script. Performance on the leading edge supercomputers can be very tricky. Make 
sure that the proper queues are used as well as proper environment settings. In addition, run 
times can vary by a factor of 2 or more due to resource contention with other running jobs.  



 
 

Computing Temporal Statistics 
Currently the spatio-temporal scripts that are generated through ParaView’s GUI plugin don’t 
share information between time steps. Thus, filters that depend on information from multiple 
time steps won’t work. An example of this is the Temporal Statistics filter. For climate data 
analysis, computing temporal statistics can be very useful but also very time consuming for 
large amounts of time steps. Because of this, we have developed a temporal statistics filter 
that can take advantage of spatio-temporal parallelism. The statistics that are computed are 
average, minimum, maximum and standard deviation. In addition, several climatologies are 
also supported. An example script that does this is shown below: 

try: paraview.simple 
except: from paraview.simple import * 
paraview.simple._DisableFirstRenderCameraReset() 
 
reader = NetCDFReader( \ 
  FileName=['/home/kitware/DATA/V_cam5.1994.nc', \ 
            '/home/kitware/DATA/V_cam5.1995.nc', \ 
            '/home/kitware/DATA/V_cam5.1996.nc'] ) 
reader.Dimensions = '(lev, lat, lon)' 
 



MultiBlockTemporalStatistics1 = MultiBlockTemporalStatistics() 
MultiBlockTemporalStatistics1.TimeStepType = 'Months' 
MultiBlockTemporalStatistics1.SamplingMethod = 'Consecutive' 
MultiBlockTemporalStatistics1.TimeSpan = 'Year' 
MultiBlockTemporalStatistics1.TimeStepLength = 1 
MultiBlockTemporalStatistics1.TimeCompartmentSize = 8 
 
writer = XMLMultiBlockDataWriter() 
writer.FileName = "stats.vtm" 
writer.UpdatePipeline() 

 
The script is rather simple in that it reads in a set of files 
(/home/kitware/DATA/V_cam5.1994.nc, /home/kitware/DATA/V_cam5.1995.nc and 
'/home/kitware/DATA/V_cam5.1996.nc), sets the temporal statistics to compute, and then 
writes out the data to a file called stats.vtm in the current directory. The parameters for 
each of the filters are listed below. 

● NetCDFReader -- the file reader 
○ FileName -- a list of strings for the names and locations of the files to be read 

in. Note that data from multiple time steps can be stored in each input data 
file. 

○ Dimensions -- the NetCDF dimension variables that are used for specifying the 
grid as well as the attributes defined over the grid (e.g. fields such as velocity, 
temperature, etc.) 

● MultiBlockTemporalStatistics -- the filter that computes temporal statistics 
○ TimeStepType -- whether the time step is in days (‘Days’) or months 

(‘Months’). The default is ‘Days’. 
○ SamplingMethod -- specifies how to group the statistics. ‘Climatology’ means 

that all of a type are grouped together (e.g. all Februaries), ‘Consecutive’ 
means a specific time period (e.g. February 2012). The default value is 
‘Climatology’. 

○ TimeSpan -- specifies what span of time to average together. The options are: 
■ AllTimeSteps -- average over the entire set of time steps (default) 
■ Month -- average over months 
■ Season -- average over the standard seasons 
■ Year -- average over each year 
■ Decade -- average over each decade 

○ TimeStepLength -- the number of days or months in a time step. The default 
value is 1. 

○ TimeCompartmentSize -- the number of processes working together on a 
specific time step. 

● XMLMultiBlockDataWriter -- the writer used to save the data. Note that the files will 
get written out in VTK’s XML multiblock data set format. The proper file extension is 
‘.vtm’. 



○ FileName -- specifies the name to be used for storing the data. This can also 
include a relative or absolute path. 

○ UpatePipeline() -- the method used to execute the computation. 
 

Support 
For support with either installing, using this software and/or creating spatio-temporal scripts, 
please email uvcdat-support@llnl.gov. 


